Structural evidence for the partially oxidized dipyrromethene and dipyrromethanone forms of the cofactor of porphobilinogen deaminase: structures of the Bacillus megaterium enzyme at near-atomic resolution
نویسندگان
چکیده
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor, which is covalently linked by a thioether bridge to an invariant cysteine residue (Cys241 in the Bacillus megaterium enzyme). The cofactor is extended during the reaction by the sequential addition of the four substrate molecules, which are released as a linear tetrapyrrole product. Expression in Escherichia coli of a His-tagged form of B. megaterium PBGD has permitted the X-ray analysis of the enzyme from this species at high resolution, showing that the cofactor becomes progressively oxidized to the dipyrromethene and dipyrromethanone forms. In previously solved PBGD structures, the oxidized cofactor is in the dipyromethenone form, in which both pyrrole rings are approximately coplanar. In contrast, the oxidized cofactor in the B. megaterium enzyme appears to be in the dipyrromethanone form, in which the C atom at the bridging α-position of the outer pyrrole ring is very clearly in a tetrahedral configuration. It is suggested that the pink colour of the freshly purified protein is owing to the presence of the dipyrromethene form of the cofactor which, in the structure reported here, adopts the same conformation as the fully reduced dipyrromethane form.
منابع مشابه
Crystallization and preliminary X-ray characterization of the tetrapyrrole-biosynthetic enzyme porphobilinogen deaminase from Bacillus megaterium
The enzyme porphobilinogen deaminase (PBGD; hydroxymethylbilane synthase; EC 2.5.1.61) catalyses an early step of the tetrapyrrole-biosynthesis pathway in which four molecules of the monopyrrole porphobilinogen are condensed to form a linear tetrapyrrole. The enzyme possesses a dipyrromethane cofactor which is covalently linked by a thioether bridge to an invariant cysteine residue. Expression ...
متن کاملStructural studies of domain movement in active-site mutants of porphobilinogen deaminase from Bacillus megaterium.
The enzyme porphobilinogen deaminase (PBGD) is one of the key enzymes in tetrapyrrole biosynthesis. It catalyses the formation of a linear tetrapyrrole from four molecules of the substrate porphobilinogen (PBG). It has a dipyrromethane cofactor (DPM) in the active site which is covalently linked to a conserved cysteine residue through a thioether bridge. The substrate molecules are linked to th...
متن کاملThe Role of Highly Conserved Tryptophan in the Sixth Conserved Region at Substrate Specificity of α- amylase
Early in this study, an α-Amylase from Bacillus megaterium WHO (BMW) was isolated from hot springs of Ramsar (North of Iran), and its gene was cloned in E.coli. Based on its conserved sequence regions and substrate specificity, it was classified as intermediary group enzymes with the specificity of oligo-1,6-glucosidase and neopullulanase subfamilies. In the sixth conserved re...
متن کاملDiscovery that the assembly of the dipyrromethane cofactor of porphobilinogen deaminase holoenzyme proceeds initially by the reaction of preuroporphyrinogen with the apoenzyme.
The assembly process of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase holoenzyme is initiated by the reaction of the porphobilinogen deaminase apoenzyme with preuroporphyrinogen. The resulting enzyme-bound tetrapyrrole (bilane) is equivalent to the holoenzyme intermediate complex ES2 and yields the dipyrromethane cofactor by reactions of the normal catalytic cycle. T...
متن کاملCharacterization of an a-Amylase with Broad Temperature Activity from an Acid-Neutralizing Bacillus cereus Strain
Bacillus sp. GUF8, isolated from acidic soil samples of a tea farm was identified as Bacillus cereus, based on 16S rDNA sequencing and standard bacterial identification methods. Following optimization of enzyme production, the resulting α-amylase was purified by acetone precipitation and ion exchange chromatography. Consequently, thermostability and kinetic parameters of the purified enzyme wer...
متن کامل